
4 Inferring Surface Temperature from
a Star’s Color and/or Spectrum

Let us next consider why stars shine with such extreme brightness. Over the

long-term (i.e., millions of years), the enormous energy emitted comes from the

energy generated (by nuclear fusion) in the stellar core, as discussed further in §18

below. But the more immediate reason stars shine is more direct, namely because

their surfaces are so very hot. The light they emit is called “thermal radiation”,

and arises from the jostling of the atoms (and particularly the electrons in and

around those atoms) by the violent collisions associated with the star’s high

temperature1.

Figure 4.1 The Electromagnetic Spectrum.

1 In astronomy, temperature is measured in a degree unit called a Kelvin, abbreviated K,
and defined relative to the centigrade or “Celsius” scale C such that K = C + 273. A

temperature of T = 0K is called “absolute zero”, and represents the ideal limit that all
thermal motion is completely stopped. To convert from our US use of the Fahrenheit scale

F , we first just convert to centigrade using C = (5/9)(F − 32), and then add 273 to get the
temperature in K.
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4.1 The wave nature of light

To lay the groundwork for a general understanding of the key physical laws

governing such thermal radiation and how it depends on temperature, we have

to review what is understood about the basic nature of light, and the processes

by which it is emitted and absorbed.

The 19th century physicist James Clerk Maxwell developed a set of 4 equations

(Maxwell’s equations) that showed how variations in Electric and Magnetic fields

could lead to oscillating wave solutions, which he indeed indentifed with light,

or more generally Electro-Magnetic (EM) radiation. The wavelengths λ of these

EM waves are key to their properties. As illustrated in figure 4.1, visible light

corresponds to wavelengths ranging from λ ≈ 400 nm (violet) to λ ≈ 750 nm

(red), but the full spectrum extends much further, including Ultra-Violet (UV),

X-rays, and gamma rays at shorter wavelengths, and InfraRed (IR), microwaves,

and radio waves at longer wavelengths. White light is made up of a broad mix

of visible light ranging from Red through Green to Blue (RGB).

In a vacuum, all these EM waves travel at the same speed, namely the speed

of light, customarily denoted as c, with a value c ≈ 3× 105 km/s = 3× 108 m/s

= 3× 1010 cm/s. The wave period is the time it takes for a complete wavelength

to pass a fixed point at this speed, and so is given by P = λ/c. We can thus

see that the sequence of wave crests passes by at a frequency of once per period,

ν = 1/P , implying a simple relationship between light’s wavelength λ, frequency

ν, and speed c,

λ

P
= λν = c . (4.1)

4.2 Light quanta and the Black-Body emission spectrum

The wave nature of light has been confirmed by a wide range experiments. How-

ever, at the beginning of the 20th century, work by Einstein, Planck, and others

led to the realization that light waves are also quantized into discrete wave “bun-

dles” called photons. Each photon carries a discrete, indivisible “quantum” of

energy that depends on the wave frequency as

E = hν , (4.2)

where h is Planck’s constant, with value h ≈ 6.6 × 10−27 erg s = 6.6 × 10−34

Joule s.

This quantization of light (and indeed of all energy) has profound and wide-

ranging consequences, most notably in the current context for how thermally

emitted radiation is distributed in wavelength or frequency. This is known as the

“Spectral Energy Distribution” (SED). For a so-called Black Body – meaning



4.2 Light quanta and the Black-Body emission spectrum 25

5500 K

5000 K

4000 K

3500 K

4500 K

0 500 1000 1500 2000

0

5.0×106

1.0×107

1.5×107

2.0×107

λ (nm)

B
λ
(e
rg
/s
/c
m
2
/n
m
)

Figure 4.2 The Planck Black-Body Spectral Energy Distribution (SED) vs.
wavelength λ, plotted for various temperatures T .

idealized material that is readily able to absorb and emit radiation of all wave-

lengths –, Planck showed that as thermal motions of the material approach a

Thermodynamic Equilibrium (TE) in the exchange of energy between radiation

and matter, the SED can be described by a function that depends only on the gas

temperature T (and not, e.g., on the density, pressure, or chemical composition).

In terms of the wave frequency ν, this Planck Black-Body function takes the

form

Bν(T ) =
2hν3/c2

ehν/kT − 1
, (4.3)

where k is Boltzmann’s constant, with value k = 1.38 × 10−16 erg/K = 1.38 ×
10−23 Joule/K. For an interval of frequency between ν and ν + dν, the quantity

Bνdν gives the emitted energy per unit time per unit area per unit solid an-

gle. This means the Planck Black-Body function is fundamentally a measure of

intensity or surface brightness, with Bν representing the distribution of surface

brightness over frequency ν, having CGS units erg/cm2/s/ster/Hz (and MKS

units W/m2/ster/Hz).

Sometimes it is convenient to instead define this Planck distribution in terms of

the brightness distribution in a wavelength interval between λ and λ+dλ, Bλdλ.

Requiring that this equalsBνdν, and noting that ν = c/λ implies |dν/dλ| = c/λ2,

we can use eqn. (4.3) to obtain

Bλ(T ) =
2hc2/λ5

ehc/λkT − 1
. (4.4)
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4.3 Inverse-temperature dependence of wavelength for peak flux

Figure 4.2 plots the variation of Bλ vs. wavelength λ for various temperatures

T . Note that for higher temperature, the level of Bλ is higher at all wavelengths,

with greatest increases near the peak level.

Moreover, the location of this peak shifts to shorter wavelength with higher

temperature. We can determine this peak wavelength λmax by solving the equa-

tion [
dBλ
dλ

]
λ=λmax

≡ 0 . (4.5)

Leaving the details as an exercise, the result is

λmax =
2.9× 106 nm K

T
=

290 nm

T/10, 000K
≈ 500 nm

T/T�
, (4.6)

which is known as Wien’s displacement law.

For example, the last equality uses the fact that the observed wavelength peak

in the Sun’s spectrum is λmax,� ≈ 500 nm, very near the the middle of the visible

spectrum.2 We can solve for a Black-Body-peak estimate for the Sun’s surface

temperature

T� =
2.9× 106 nm K

500 nm
= 5800K . (4.7)

By similarly measuring the peak wavelength λmax in other stars, we can likewise

derive an estimate of their surface temperature by

T = T�
λmax,�
λmax

≈ 5800K
500 nm

λmax
. (4.8)

4.4 Inferring stellar temperatures from photometric colors

In practice, this is not quite the approach to estimating a star’s temperature

that is most commonly used in astronomy, in part because with real SEDs, it

is relatively difficult to identify accurately the peak wavelength. Moreover in

surveying a large number of stars, it requires a lot more effort (and telescope

time) to measure the full SED, especially for relatively faint stars. A simpler,

more common method is just to measure the stellar color.

But rather than using the Red, Green, and Blue (RGB) colors we perceive

with our eyes, astronomers typically define a set of standard colors that extend

to wavebands beyond just the visible spectrum. The most common example is

the Johnson 3-color UBV (Ulraviolet, Blue, Visible) system. The left panel of

2 This is not entirely coincidental, since our eyes evolved to use the wavelengths of light for
which the solar illumination is brightest.
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Figure 4.3 Left: Comparison of the spectral sensitivity of the human eye with those
the UBV filters in the Johnson photometric color system. Right: Temperature
dependence of the B-V color for a Black-Body emitted spectrum. The circle dot
marks the solar values T� ≈ 5800 K and (B − V )� ≈ 0.656.

figure 4.3 compares the wavelength sensitivity of such UBV filters to that of the

human eye. By passing the star’s light through a standard set of filters designed

to only let through light for the defined color waveband, the observed apparent

brightness in each filter can be used to define a set of color magnitudes, e.g.

mU ,mB , and mV .

The standard shorthand is simply to denote these color magnitudes just by

the capital letter alone, viz. U, B, and V. The difference between two color

magnitudes, e.g. B − V ≡ mB − mV , is independent of the stellar distance,

but provides a direct diagnostic of the stellar temperature, sometimes called the

“color temperature”.

Because a larger magnitude corresponds to a lower brightness, stars with a

positive B-V actually are less bright in the blue than in the visible, implying

a relatively low temperature. On the other hand, a negative B-V means blue

is brighter, implying a high temperature. The right panel of figure 4.3 shows

how the temperature of a Black-Body varies with the B-V color of the emitted

Black-Body spectrum.

4.5 Questions and Exercises

Quick Question 1: Two photons have wavelength ratio λ2/λ1 = 2.

a. What is the ratio of their period P2/P1?

b. What is the ratio of their frequency ν2/ν1?

c. What is the ratio of their energy E2/E1?

Quick Question 2:


