Part VI: Approximation Methods

Most quantum systems cannot be solved exactly. We develop systematic approximation techniques: perturbation theory (time-independent and time-dependent), variational methods, and adiabatic approximations.

60+ pages | 7 chapters

1. Time-Independent Perturbation (10 pages)

Non-degenerate perturbation theory, energy corrections

$\hat{H} = \hat{H}_0 + \lambda\hat{V}$, $E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots$

2. Degenerate Perturbation Theory (8 pages)

Degenerate states, good quantum numbers, matrix diagonalization

Secular equation: $\det(V_{ij} - E^{(1)}\delta_{ij}) = 0$, good basis selection

3. Fine Structure of Hydrogen (9 pages)

Relativistic corrections, spin-orbit coupling, Lamb shift

$\Delta E_{fs} \propto \alpha^2 E_n$, $\hat{H}_{SO} = \frac{1}{2m^2c^2}\frac{1}{r}\frac{dV}{dr}\hat{\vec{L}}\cdot\hat{\vec{S}}$

4. Time-Dependent Perturbation (12 pages)

Interaction picture, Dyson series, transition probabilities

$c_n(t) = -\frac{i}{\hbar}\int_0^t V_{ni}(t')e^{i\omega_{ni}t'}dt'$, $P_{i\to n} = |c_n(t)|^2$

5. Fermi's Golden Rule (7 pages)

Transition rates, density of states, selection rules

$\Gamma_{i\to f} = \frac{2\pi}{\hbar}|V_{fi}|^2\rho(E_f)$, continuum approximation

6. Variational Method (7 pages)

Ground state energy bounds, trial wavefunctions

$E_{gs} \leq \langle\psi_{trial}|\hat{H}|\psi_{trial}\rangle$, Rayleigh-Ritz principle

7. Adiabatic Approximation (7 pages)

Slowly varying Hamiltonians, Berry phase

$|\psi(t)\rangle = e^{i\gamma_n(t)}e^{-\frac{i}{\hbar}\int_0^t E_n(t')dt'}|n(t)\rangle$, geometric phase $\gamma_n$