Part II, Chapter 5

Quantizing the Dirac Field

Fermions, anticommutators, and the birth of antiparticles

▶️

Video Lecture

Lecture 16: Dirac Field Quantization - MIT 8.323

Fermionic anticommutators and the electron-positron field (MIT QFT Course)

💡 Tip: Watch at 1.25x or 1.5x speed for efficient learning. Use YouTube's subtitle feature if available.

5.1 Review: Classical Dirac Field

The Dirac equation describes spin-1/2 particles (electrons, quarks, neutrinos):

$$(i\gamma^\mu \partial_\mu - m)\psi = 0$$

where ψ is a 4-component spinor and γμ are the gamma matricessatisfying {γμ, γν} = 2gμν.

The Dirac Lagrangian is:

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi$$

where ψ̄ = ψγ0 is the Dirac adjoint.

5.2 Mode Expansion

The general solution to the free Dirac equation is a sum of plane waves:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_{s=1}^2 \left[ u^s(p) e^{-ip \cdot x} + v^s(p) e^{ip \cdot x} \right]$$

where:

  • us(p) = positive energy spinors (s = 1, 2 for spin up/down)
  • vs(p) = negative energy spinors
  • Ep = √(p² + m²)

💡The Negative Energy Problem

Classically, the Dirac equation has both positive energy (E = +√(p² + m²)) and negative energy (E = -√(p² + m²)) solutions. Negative energies seem unphysical—you could keep extracting infinite energy!

Dirac's brilliant solution: Interpret negative energy states as antiparticles(positrons) with positive energy moving backward in time, or equivalently, forward in time with opposite charge!

5.3 Naive Quantization Fails!

Let's try to quantize like we did for scalars, using commutators:

$$\hat{\psi}(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_s \left[ \hat{b}_p^s u^s(p) e^{-ip \cdot x} + \hat{d}_p^{s\dagger} v^s(p) e^{ip \cdot x} \right]$$

If we impose commutation relations [b̂, b̂] = 1, we get:

❌ Problem: Negative Energy!

The Hamiltonian would be:

$$\hat{H} = \int \frac{d^3p}{(2\pi)^3} E_p \sum_s \left[ \hat{b}_p^{s\dagger}\hat{b}_p^s - \hat{d}_p^s\hat{d}_p^{s\dagger} \right]$$

The second term has the wrong sign! Using [d̂, d̂] = 1 gives -Ep contribution → unbounded from below! The vacuum would be unstable.

5.4 The Solution: Anticommutators!

Instead, we impose anticommutation relations:

\begin{align*} \{\hat{b}_p^r, \hat{b}_q^{s\dagger}\} &= (2\pi)^3 \delta^3(\mathbf{p} - \mathbf{q}) \delta^{rs} \\ \{\hat{d}_p^r, \hat{d}_q^{s\dagger}\} &= (2\pi)^3 \delta^3(\mathbf{p} - \mathbf{q}) \delta^{rs} \\ \{\hat{b}_p^r, \hat{b}_q^s\} &= 0, \quad \{\hat{d}_p^r, \hat{d}_q^s\} = 0 \\ \{\hat{b}_p^r, \hat{d}_q^s\} &= 0, \quad \{\hat{b}_p^r, \hat{d}_q^{s\dagger}\} = 0 \end{align*}

where {A, B} = AB + BA is the anticommutator.

Now the Hamiltonian becomes:

$$\hat{H} = \int \frac{d^3p}{(2\pi)^3} E_p \sum_s \left[ \hat{b}_p^{s\dagger}\hat{b}_p^s + \hat{d}_p^{s\dagger}\hat{d}_p^s \right] + \text{const}$$

Perfect! Both terms are positive. The constant is an infinite vacuum energy (like for bosons), removed by normal ordering.

💡Why Anticommutators Work

With anticommutators, {d̂, d̂} = 1 means:

d̂ d̂ + d̂ d̂ = 1

Rearranging: d̂ d̂ = 1 - d̂

This flips the sign in the Hamiltonian! The "negative energy" term -Ep d̂ d̂ becomes +Ep d̂ after normal ordering. The d̂ operator now creates antiparticles with positive energy!

5.5 Pauli Exclusion Principle

Anticommutators automatically give us the Pauli exclusion principle!

Consider trying to create two particles in the same state:

\begin{align*} (\hat{b}_p^{s\dagger})^2 |0\rangle &= \hat{b}_p^{s\dagger} \hat{b}_p^{s\dagger} |0\rangle \\ &= -\hat{b}_p^{s\dagger} \hat{b}_p^{s\dagger} |0\rangle \quad \text{(anticommutation)} \\ &= 0 \end{align*}

The state vanishes! You cannot put two fermions in the same state (same p, same spin).

The occupation number for fermions can only be 0 or 1:

$$n_p^s = \hat{b}_p^{s\dagger} \hat{b}_p^s, \quad n_p^s \in \{0, 1\}$$

5.6 Particles and Antiparticles

The quantized Dirac field has two types of excitations:

Particles (electrons)

  • Created by: b̂†p,s
  • Destroyed by: p,s
  • Energy: +Ep = +√(p² + m²)
  • Charge: -e (for electrons)
  • Spinor: us(p)

Antiparticles (positrons)

  • Created by: d̂†p,s
  • Destroyed by: p,s
  • Energy: +Ep = +√(p² + m²) (also positive!)
  • Charge: +e (opposite to particle)
  • Spinor: vs(p)

Both have positive energy! The quantum field theory interpretation is:

Dirac Sea → Modern Interpretation:

Old view (Dirac): Vacuum is a "sea" of filled negative energy states. A hole in the sea is a positron.

Modern view (QFT): Vacuum is the state |0⟩ with no particles or antiparticles. Both electrons (b̂) and positrons (d̂) are excitations above the vacuum, both with positive energy!

5.7 Equal-Time Anticommutation Relations

For the field operators themselves:

\begin{align*} \{\hat{\psi}_\alpha(\mathbf{x}, t), \hat{\psi}_\beta^\dagger(\mathbf{y}, t)\} &= \delta^3(\mathbf{x} - \mathbf{y}) \delta_{\alpha\beta} \\ \{\hat{\psi}_\alpha(\mathbf{x}, t), \hat{\psi}_\beta(\mathbf{y}, t)\} &= 0 \\ \{\hat{\psi}_\alpha^\dagger(\mathbf{x}, t), \hat{\psi}_\beta^\dagger(\mathbf{y}, t)\} &= 0 \end{align*}

where α, β = 1, 2, 3, 4 are spinor indices.

These are the canonical anticommutation relations (CAR) for fermions, analogous to CCR for bosons.

5.8 Dirac Propagator

The Feynman propagator for the Dirac field is:

$$S_F(x - y) = \langle 0 | T\{\hat{\psi}(x) \bar{\hat{\psi}}(y)\} | 0 \rangle$$

In momentum space:

$$\tilde{S}_F(p) = \frac{i(\gamma^\mu p_\mu + m)}{p^2 - m^2 + i\epsilon} = \frac{i(\slashed{p} + m)}{p^2 - m^2 + i\epsilon}$$

where /p = γμpμ is the Feynman slash notation.

Note: This is a 4×4 matrix (in spinor space), not a scalar!

5.9 Bosons vs. Fermions

Scalar Fields vs. Dirac Fields

Key differences between bosonic and fermionic quantization

AspectScalar Field (Bosons)Dirac Field (Fermions)
SpinSpin 0Spin 1/2
Field Components1 (scalar φ)4 (spinor ψᵅ)
StatisticsBose-EinsteinFermi-Dirac
AlgebraCommutators [â, â†]Anticommutators {b̂, b̂†}
ExclusionMultiple occupation allowedPauli exclusion: 0 or 1 particle per state
Equation of MotionKlein-Gordon: (□ + m²)φ = 0Dirac: (iγᵘ∂ᵤ - m)ψ = 0

Code Example: Dirac Spinor Modes

🐍

Dirac Field Mode Expansion

Visualize electron and positron spinor modes

python
import numpy as np
import matplotlib.pyplot as plt

# Dirac spinor mode decomposition
def dirac_field_mode(x, t, p, m, s, particle_type='particle'):
    """
    Calculate Dirac field contribution from a single mode

    Parameters:
    - x: spatial position
    - t: time
    - p: momentum (3-vector)
    - m: mass
    - s: spin projection (±1/2)
    - particle_type: 'particle' or 'antiparticle'
    """
    E_p = np.sqrt(np.dot(p, p) + m**2)

    # Plane wave
    phase = np.dot(p, x) - E_p * t

    if particle_type == 'particle':
        # Particle mode: positive energy
        spinor = positive_energy_spinor(p, m, s)
        psi = spinor * np.exp(-1j * phase)
    else:
        # Antiparticle mode: uses v spinor
        spinor = negative_energy_spinor(p, m, s)
        psi = spinor * np.exp(1j * phase)  # Note: +i phase for antiparticle

    return psi

def positive_energy_spinor(p, m, s):
    """u spinor for particles (simplified)"""
    E_p = np.sqrt(np.dot(p, p) + m**2)
    # Normalization: u†u = 2m
    if s == 0.5:  # spin up
        return np.array([1, 0, p[2]/(E_p + m), (p[0] + 1j*p[1])/(E_p + m)]) * np.sqrt(E_p + m)
    else:  # spin down
        return np.array([0, 1, (p[0] - 1j*p[1])/(E_p + m), -p[2]/(E_p + m)]) * np.sqrt(E_p + m)

def negative_energy_spinor(p, m, s):
    """v spinor for antiparticles (simplified)"""
    E_p = np.sqrt(np.dot(p, p) + m**2)
    # Normalization: v†v = 2m
    if s == 0.5:  # spin up
        return np.array([p[2]/(E_p + m), (p[0] + 1j*p[1])/(E_p + m), 1, 0]) * np.sqrt(E_p + m)
    else:  # spin down
        return np.array([(p[0] - 1j*p[1])/(E_p + m), -p[2]/(E_p + m), 0, 1]) * np.sqrt(E_p + m)

# Example: electron and positron
m_e = 1  # electron mass (natural units)
p = np.array([0.5, 0, 0])  # momentum in x-direction

x_vals = np.linspace(-10, 10, 200)
t = 0

electron = [dirac_field_mode(np.array([x, 0, 0]), t, p, m_e, 0.5, 'particle')[0] for x in x_vals]
positron = [dirac_field_mode(np.array([x, 0, 0]), t, p, m_e, 0.5, 'antiparticle')[0] for x in x_vals]

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(x_vals, np.real(electron), label='Re(ψ)')
plt.plot(x_vals, np.imag(electron), label='Im(ψ)', linestyle='--')
plt.title('Electron (particle) mode')
plt.xlabel('x')
plt.legend()
plt.grid(True, alpha=0.3)

plt.subplot(1, 2, 2)
plt.plot(x_vals, np.real(positron), label='Re(ψ)')
plt.plot(x_vals, np.imag(positron), label='Im(ψ)', linestyle='--')
plt.title('Positron (antiparticle) mode')
plt.xlabel('x')
plt.legend()
plt.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

print("Electron (e⁻) created by b̂†ₚ operator")
print("Positron (e⁺) created by d̂†ₚ operator")
print("Both have positive energy E_p > 0!")
💡 Run with: python script.py

⚠️Common Mistakes to Avoid

Mistake:

Using commutators instead of anticommutators for fermions
🤔

Why it's wrong:

Commutators would give wrong sign in Hamiltonian and violate Pauli exclusion.

Correct approach:

Fermions satisfy {ψ̂, ψ̂†} = 1, NOT [ψ̂, ψ̂†] = 1. Anticommutators {A, B} = AB + BA are essential for the Pauli exclusion principle!

Mistake:

Forgetting that ψ is a 4-component spinor, not a scalar
🤔

Why it's wrong:

Spinor structure is essential for describing spin-1/2 particles and Lorentz transformations.

Correct approach:

The Dirac field ψ = (ψ₁, ψ₂, ψ₃, ψ₄)ᵀ has 4 components. Each component is an independent field operator!

Mistake:

Confusing particle and antiparticle modes
🤔

Why it's wrong:

Both particles and antiparticles have positive energy after proper quantization.

Correct approach:

b̂†ₚ creates particles (positive energy), d̂†ₚ creates antiparticles (positive energy, opposite charge). Both have E > 0 in the final theory!

🎯 Key Takeaways

  • Dirac field ψ: 4-component spinor describing spin-1/2 particles
  • Anticommutators {b̂, b̂} = 1 (NOT commutators!)
  • Pauli exclusion: (b̂)² = 0 → max 1 fermion per state
  • Particles: b̂ creates electrons with u spinors
  • Antiparticles: d̂ creates positrons with v spinors
  • Both have positive energy Ep > 0!
  • Dirac propagator: SF(p) = i(/p + m)/(p² - m² + iε)
  • CAR: {ψ̂, ψ̂} = δ³(x - y) at equal times
  • Next: Why do bosons commute and fermions anticommute?