Hilbert Spaces
The mathematical arena where quantum mechanics lives
1.1 Vector Spaces Over ℂ
A vector space V over the complex numbers ℂ is a set equipped with two operations: vector addition and scalar multiplication, satisfying certain axioms.
Definition: Vector Space
A set V is a vector space over ℂ if for any vectors $|\psi\rangle, |\phi\rangle, |\chi\rangle \in V$and scalars $\alpha, \beta \in \mathbb{C}$, the following hold:
- 1. Closure under addition: $|\psi\rangle + |\phi\rangle \in V$
- 2. Commutativity: $|\psi\rangle + |\phi\rangle = |\phi\rangle + |\psi\rangle$
- 3. Associativity: $(|\psi\rangle + |\phi\rangle) + |\chi\rangle = |\psi\rangle + (|\phi\rangle + |\chi\rangle)$
- 4. Zero vector: ∃ $|0\rangle \in V$ such that $|\psi\rangle + |0\rangle = |\psi\rangle$
- 5. Additive inverse: ∀ $|\psi\rangle$ ∃ $-|\psi\rangle$ such that $|\psi\rangle + (-|\psi\rangle) = |0\rangle$
- 6. Closure under scalar multiplication: $\alpha|\psi\rangle \in V$
- 7. Distributivity (vectors): $\alpha(|\psi\rangle + |\phi\rangle) = \alpha|\psi\rangle + \alpha|\phi\rangle$
- 8. Distributivity (scalars): $(\alpha + \beta)|\psi\rangle = \alpha|\psi\rangle + \beta|\psi\rangle$
- 9. Associativity (scalar): $(\alpha\beta)|\psi\rangle = \alpha(\beta|\psi\rangle)$
- 10. Identity: $1|\psi\rangle = |\psi\rangle$
Examples of Vector Spaces
Example 1: $\mathbb{C}^n$
The space of n-tuples of complex numbers:
Example 2: $L^2(\mathbb{R})$
Square-integrable functions on the real line:
This is the space of wave functions in position representation!
Example 3: Fock Space
The space of quantum field states with variable particle number (important in QFT).
1.2 Inner Product
An inner product is a map $\langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$ that assigns a complex number to each pair of vectors, generalizing the dot product.
Definition: Inner Product
An inner product on V must satisfy:
- Conjugate Linearity in first argument:$$\langle \alpha\psi + \beta\phi | \chi \rangle = \alpha^* \langle \psi | \chi \rangle + \beta^* \langle \phi | \chi \rangle$$
- Linearity in second argument:$$\langle \psi | \alpha\phi + \beta\chi \rangle = \alpha \langle \psi | \phi \rangle + \beta \langle \psi | \chi \rangle$$
- Hermitian symmetry:$$\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$$
- Positive definiteness:$$\langle \psi | \psi \rangle \geq 0, \quad \text{and} \quad \langle \psi | \psi \rangle = 0 \iff |\psi\rangle = |0\rangle$$
Examples of Inner Products
In $\mathbb{C}^n$:
In $L^2(\mathbb{R})$:
This is the inner product we use for wave functions!
The Norm
The inner product induces a norm (length) on vectors:
A vector is normalized if $\||\psi\rangle\| = 1$, i.e., $\langle \psi | \psi \rangle = 1$. This is crucial in quantum mechanics: probability conservation requires normalized states!
Physical Interpretation:
In QM, the inner product $\langle \phi | \psi \rangle$ gives the probability amplitude for a system in state $|\psi\rangle$ to be found in state $|\phi\rangle$. The probability is$|\langle \phi | \psi \rangle|^2$.
1.3 Cauchy-Schwarz Inequality
One of the most important inequalities in mathematics and quantum mechanics:
Or in norm notation:
Equality holds if and only if $|\psi\rangle$ and $|\phi\rangle$ are linearly dependent, i.e., $|\psi\rangle = \alpha|\phi\rangle$ for some $\alpha \in \mathbb{C}$.
Proof Sketch
Consider the non-negative quantity (for normalized $|\phi\rangle$):
Expanding this gives:
Rearranging yields Cauchy-Schwarz! □
Physical Consequence:
For normalized states, $|\langle \phi | \psi \rangle|^2 \leq 1$, meaning probabilities (probability amplitudes squared) cannot exceed 1. This ensures consistency of the probabilistic interpretation!
Key Concepts (Page 1)
- • Quantum states live in complex vector spaces over ℂ
- • Inner product $\langle \psi | \phi \rangle$ gives probability amplitudes
- • Normalized states satisfy $\langle \psi | \psi \rangle = 1$
- • Cauchy-Schwarz ensures probabilities ≤ 1
- • $L^2(\mathbb{R})$ is the space of square-integrable wave functions