← Part II/Correspondence Principle

7. Correspondence Principle

Reading time: ~30 minutes | Pages: 6

Quantum mechanics must reduce to classical mechanics in appropriate limits.

Statement

In the limit of large quantum numbers ($n \gg 1$) or small $\hbar$, quantum predictions approach classical results.

Ehrenfest's Theorem

Expectation values obey classical-like equations:

$$\frac{d\langle\hat{x}\rangle}{dt} = \frac{\langle\hat{p}\rangle}{m}, \quad \frac{d\langle\hat{p}\rangle}{dt} = -\left\langle\frac{\partial V}{\partial x}\right\rangle$$

WKB Approximation

Semiclassical regime ($\lambda \ll$ characteristic length):

$$\psi(x) \approx \frac{C}{\sqrt{p(x)}}e^{i S(x)/\hbar}$$

where $S(x) = \int p(x')dx'$ is classical action

Classical Limit Conditions

  • Large quantum numbers: $n \gg 1$
  • Large action: $S \gg \hbar$
  • Short wavelength: $\lambda \ll L$ (system size)
  • Weak quantum fluctuations: $\Delta x \cdot \Delta p \gg \hbar$

Example: Harmonic Oscillator

For large $n$, quantum distribution approaches classical:

$$|\psi_n(x)|^2 \xrightarrow{n\to\infty} \frac{1}{\pi\sqrt{A^2 - x^2}} \quad \text{(classical PDF)}$$