← Part III/Free Particle

1. Free Particle

Reading time: ~25 minutes | Pages: 7

The simplest quantum system: a particle with no potential energy ($V(x) = 0$).

Time-Independent SchrΓΆdinger Equation

For a free particle in 1D:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$

This simplifies to:

$$\frac{d^2\psi}{dx^2} = -k^2\psi, \quad k = \frac{\sqrt{2mE}}{\hbar}$$

General Solutions

Two equivalent forms:

$$\psi(x) = Ae^{ikx} + Be^{-ikx} \quad \text{(plane waves)}$$

or

$$\psi(x) = C\sin(kx) + D\cos(kx) \quad \text{(standing waves)}$$

These represent momentum eigenstates $p = \pm\hbar k$

Time Evolution

Full time-dependent solution:

$$\Psi(x,t) = Ae^{i(kx - \omega t)} + Be^{-i(kx + \omega t)}$$

where $\omega = E/\hbar = \hbar k^2/(2m)$

Interpretation:

  • First term: wave traveling to the right
  • Second term: wave traveling to the left

Wave Packets

Plane waves are not normalizable. Physically realizable states are wave packets:

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \phi(k)e^{i(kx - \omega(k)t)}dk$$

where $\phi(k)$ is the momentum-space wave function

Group and Phase Velocity

Phase velocity: velocity of individual wave crests

$$v_{\text{phase}} = \frac{\omega}{k} = \frac{\hbar k}{2m}$$

Group velocity: velocity of wave packet (= particle velocity)

$$v_{\text{group}} = \frac{d\omega}{dk} = \frac{\hbar k}{m} = \frac{p}{m}$$

The group velocity matches classical velocity!

Dispersion

For a free particle, $\omega \propto k^2$, so:

$$\frac{d^2\omega}{dk^2} = \frac{\hbar}{m} \neq 0$$

Wave packets spread out over time due to dispersion:

  • Different frequency components travel at different speeds
  • Uncertainty in position increases with time
  • Momentum uncertainty remains constant

Key Properties

  • Energy spectrum: Continuous, $E \geq 0$
  • Momentum: $p = \pm\hbar k$ (positive or negative)
  • Degeneracy: Each energy corresponds to two momentum states
  • Probability current: Constant in time for plane waves