← Part V/General Angular Momentum

3. General Angular Momentum

Reading time: ~38 minutes | Pages: 10

Unified treatment of orbital and spin angular momentum: general theory for any j.

Abstract Definition

Any set of operators satisfying the angular momentum algebra:

$$[\hat{J}_i, \hat{J}_j] = i\hbar\epsilon_{ijk}\hat{J}_k$$

Can be orbital $\vec{L}$, spin $\vec{S}$, or total $\vec{J} = \vec{L} + \vec{S}$

General Eigenvalue Problem

$$\hat{J}^2|j,m\rangle = \hbar^2 j(j+1)|j,m\rangle$$
$$\hat{J}_z|j,m\rangle = \hbar m|j,m\rangle$$

where:

  • $j = 0, 1/2, 1, 3/2, 2, \ldots$ (non-negative integer or half-integer)
  • $m = -j, -j+1, \ldots, j-1, j$
  • $2j+1$ possible values of $m$ for each $j$

Ladder Operators

$$\hat{J}_\pm = \hat{J}_x \pm i\hat{J}_y$$

Commutation relations:

$$[\hat{J}_z, \hat{J}_\pm] = \pm\hbar\hat{J}_\pm, \quad [\hat{J}_+, \hat{J}_-] = 2\hbar\hat{J}_z, \quad [\hat{J}^2, \hat{J}_\pm] = 0$$

Action on States

$$\hat{J}_\pm|j,m\rangle = \hbar\sqrt{j(j+1) - m(m\pm1)}|j,m\pm1\rangle$$

Special cases:

  • $\hat{J}_+|j,j\rangle = 0$ (top of ladder)
  • $\hat{J}_-|j,-j\rangle = 0$ (bottom of ladder)

Matrix Representation

In $|j,m\rangle$ basis, angular momentum operators are $(2j+1) \times (2j+1)$ matrices

Example: $j=1$

$$J_z = \hbar\left(\begin{array}{ccc}1&0&0\\0&0&0\\0&0&-1\end{array}\right)$$

Orbital vs Spin

Orbital angular momentum $\vec{L}$:

  • Only integer values: $\ell = 0, 1, 2, \ldots$
  • Derived from spatial wave functions
  • Classical analog exists

Spin angular momentum $\vec{S}$:

  • Can be half-integer: $s = 0, 1/2, 1, 3/2, \ldots$
  • Intrinsic property
  • No classical analog

Selection Rules

For transitions between angular momentum states:

  • Electric dipole: $\Delta j = 0, \pm 1$ (but $j=0 \not\leftrightarrow j'=0$)
  • Magnetic dipole: $\Delta j = 0, \pm 1$
  • Electric quadrupole: $\Delta j = 0, \pm 1, \pm 2$

Rotations

Rotation by angle $\alpha$ around axis $\hat{n}$:

$$\hat{R}(\alpha,\hat{n}) = e^{-i\alpha\vec{J}\cdot\hat{n}/\hbar}$$

Rotations form SO(3) group (for integer $j$) or SU(2) (for half-integer $j$)