← Part V/Pauli Matrices & Spinors

2. Pauli Matrices & Spinors

Reading time: ~28 minutes | Pages: 7

Mathematical framework for spin-1/2: Pauli matrices form the basis of spinor algebra.

Definition

$$\sigma_1 = \sigma_x = \left(\begin{array}{cc}0&1\\1&0\end{array}\right)$$
$$\sigma_2 = \sigma_y = \left(\begin{array}{cc}0&-i\\i&0\end{array}\right)$$
$$\sigma_3 = \sigma_z = \left(\begin{array}{cc}1&0\\0&-1\end{array}\right)$$

Fundamental Properties

Hermitian: $\sigma_i^\dagger = \sigma_i$

Traceless: $\text{Tr}(\sigma_i) = 0$

Square to identity:

$$\sigma_i^2 = I \quad \text{for } i = 1,2,3$$

Determinant: $\det(\sigma_i) = -1$

Commutation Relations

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$

Explicitly:

$$[\sigma_x, \sigma_y] = 2i\sigma_z, \quad [\sigma_y, \sigma_z] = 2i\sigma_x, \quad [\sigma_z, \sigma_x] = 2i\sigma_y$$

Anticommutation Relations

$$\{\sigma_i, \sigma_j\} = \sigma_i\sigma_j + \sigma_j\sigma_i = 2\delta_{ij}I$$

Distinct Pauli matrices anticommute

Products of Pauli Matrices

$$\sigma_x\sigma_y = i\sigma_z, \quad \sigma_y\sigma_z = i\sigma_x, \quad \sigma_z\sigma_x = i\sigma_y$$
$$\sigma_y\sigma_x = -i\sigma_z, \quad \sigma_z\sigma_y = -i\sigma_x, \quad \sigma_x\sigma_z = -i\sigma_y$$

Pauli Vector

$$\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$$

Useful identity:

$$(\vec{\sigma}\cdot\vec{a})(\vec{\sigma}\cdot\vec{b}) = \vec{a}\cdot\vec{b}\,I + i\vec{\sigma}\cdot(\vec{a}\times\vec{b})$$

Exponentials of Pauli Matrices

For unit vector $\hat{n}$ and angle $\theta$:

$$e^{i\theta\vec{\sigma}\cdot\hat{n}/2} = \cos(\theta/2)I + i\sin(\theta/2)\vec{\sigma}\cdot\hat{n}$$

Rotation operator for spinors

Spinor Representation

Spinor: two-component complex column vector

$$\chi = \left(\begin{array}{c}\alpha\\\beta\end{array}\right), \quad |\alpha|^2 + |\beta|^2 = 1$$

Pauli matrices act on spinors:

$$\sigma_x\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}\beta\\\alpha\end{array}\right), \quad \sigma_y\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}-i\beta\\i\alpha\end{array}\right), \quad \sigma_z\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}\alpha\\-\beta\end{array}\right)$$

Eigenvalues and Eigenvectors

All Pauli matrices have eigenvalues $\pm 1$

$\sigma_z$:

$$|+\rangle = \left(\begin{array}{c}1\\0\end{array}\right), \quad |-\rangle = \left(\begin{array}{c}0\\1\end{array}\right)$$

$\sigma_x$:

$$|+\rangle_x = \frac{1}{\sqrt{2}}\left(\begin{array}{c}1\\1\end{array}\right), \quad |-\rangle_x = \frac{1}{\sqrt{2}}\left(\begin{array}{c}1\\-1\end{array}\right)$$

Completeness

Any 2×2 matrix can be expanded in $\{I, \sigma_x, \sigma_y, \sigma_z\}$:

$$M = a_0 I + a_1\sigma_x + a_2\sigma_y + a_3\sigma_z = a_0 I + \vec{a}\cdot\vec{\sigma}$$

Applications

  • Quantum computing: Single-qubit gates (X, Y, Z gates)
  • NMR: Spin dynamics
  • Condensed matter: Spin models, topological insulators
  • Particle physics: Dirac equation, weak interactions