7. Relativistic QM & Dirac Equation

Relativistic quantum mechanics reconciles quantum mechanics with special relativity. The Dirac equation naturally incorporates spin-1/2 particles, predicts antimatter, and provides the foundation for quantum field theory.

Klein-Gordon Equation

First attempt: relativistic energy-momentum relation $E^2 = p^2c^2 + m^2c^4$

Promote to operators $E \to i\hbar\partial_t$, $\vec{p} \to -i\hbar\nabla$:

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 + \frac{m^2c^2}{\hbar^2}\right)\phi = 0$$

Or in covariant form: $(\Box + m^2)\phi = 0$ where $\Box = \partial_\mu\partial^\mu$

Problems:

  • Second-order in time - requires both $\phi$ and $\dot{\phi}$ for initial conditions
  • Probability density $\rho = \frac{i\hbar}{2mc^2}(\phi^*\dot{\phi} - \phi\dot{\phi}^*)$ not positive definite!
  • No clear single-particle interpretation

Resolution: Klein-Gordon describes spin-0 particles in QFT framework, not wave function of single particle

Dirac Equation Derivation

Dirac (1928) sought first-order equation in time and space:

$$i\hbar\frac{\partial\psi}{\partial t} = (\vec{\alpha} \cdot \vec{p}c + \beta mc^2)\psi$$

Where $\vec{\alpha} = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta$ are to be determined

Require consistency with $E^2 = p^2c^2 + m^2c^4$:

\begin{align*} \{\alpha_i, \alpha_j\} &= 2\delta_{ij}\mathbb{I} \\ \{\alpha_i, \beta\} &= 0 \\ \beta^2 &= \mathbb{I} \end{align*}

Smallest matrices satisfying these are 4×4! $\psi$ must be 4-component spinor:

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix}$$

Dirac Equation in Covariant Form

Introduce gamma matrices $\gamma^\mu = (\gamma^0, \gamma^1, \gamma^2, \gamma^3)$:

$$\gamma^0 = \beta, \quad \gamma^i = \beta\alpha^i$$

Clifford algebra: $\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}\mathbb{I}$

Dirac equation:

$$(i\gamma^\mu\partial_\mu - m)\psi = 0$$

Or using Feynman slash notation: $(i\!\!\!/\partial - m)\psi = 0$

Standard representation (Dirac-Pauli):

$$\gamma^0 = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

Properties and Interpretation

1. Conserved probability current:

$$j^\mu = \bar{\psi}\gamma^\mu\psi = \psi^\dagger\gamma^0\gamma^\mu\psi$$

Satisfies $\partial_\mu j^\mu = 0$; density $\rho = \psi^\dagger\psi \geq 0$ (positive!)

2. Spin naturally emerges:

$$\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$$

Dirac particle has intrinsic spin-1/2 (not put in by hand!)

3. Negative energy solutions:

Free particle solutions have $E = \pm\sqrt{p^2c^2 + m^2c^4}$

Initially problematic - led to Dirac sea interpretation

Correctly interpreted in QFT: negative energy = antiparticles!

Free Particle Solutions

Plane wave solutions:

$$\psi = u(\vec{p})e^{-ip \cdot x/\hbar}, \quad p \cdot x = Et - \vec{p} \cdot \vec{x}$$

Four independent spinors for given momentum:

  • Two positive energy: $u^{(1)}, u^{(2)}$ (spin up/down)
  • Two negative energy: $v^{(1)}, v^{(2)}$ (antiparticle spin up/down)

At rest ($\vec{p} = 0$):

$$u^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad u^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad v^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad v^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Non-Relativistic Limit

Write spinor as $\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}$ (2-component each)

In limit $v \ll c$, $\chi$ is small and Dirac equation reduces to:

$$i\hbar\frac{\partial\phi}{\partial t} = \left[\frac{\vec{\sigma} \cdot \vec{p}}{2m} + V\right]\phi$$

This is the Pauli equation with spin!

Including electromagnetic field $\vec{p} \to \vec{p} - e\vec{A}$:

$$i\hbar\frac{\partial\phi}{\partial t} = \left[\frac{(\vec{\sigma} \cdot (\vec{p} - e\vec{A}))^2}{2m} + e\Phi\right]\phi$$

Expanding $(\vec{\sigma} \cdot \vec{\pi})^2 = \vec{\pi}^2 + \vec{\sigma} \cdot (\vec{\pi} \times \vec{\pi})$ gives magnetic moment:

$$\mu = -\frac{e\hbar}{2m}\vec{\sigma} \cdot \vec{B}$$

Predicts $g = 2$ for electron (confirmed experimentally!)

Antimatter Prediction

Negative energy solutions require reinterpretation:

Dirac sea (historical):

All negative energy states filled (Pauli exclusion)

Hole in sea = positive energy, opposite charge = antiparticle

Modern interpretation (QFT):

Negative frequency mode $v e^{ip \cdot x}$ reinterpreted as positive energy antiparticle $e^{-ip \cdot x}$

Prediction confirmed:

Positron (anti-electron) discovered by Anderson in 1932, just 4 years after Dirac equation!

All fundamental fermions now known to have antiparticles

Hydrogen Atom with Dirac Equation

Exact solution for Coulomb potential $V = -e^2/(4\pi\epsilon_0 r)$:

$$E_{n,j} = mc^2\left[1 + \frac{\alpha^2}{(n - j - 1/2 + \sqrt{(j+1/2)^2 - \alpha^2})^2}\right]^{-1/2}$$

Where $\alpha = e^2/(4\pi\epsilon_0\hbar c) \approx 1/137$ is the fine structure constant

Fine structure:

Energy depends on total angular momentum $j = l \pm 1/2$, not just $n$

Splitting of order $\alpha^2 E_n \sim 10^{-5}$ eV (precisely measured!)

Corrections account for:

  • Spin-orbit coupling
  • Relativistic kinetic energy correction
  • Darwin term (zitterbewegung effect)

Limitations and QFT

Dirac equation limitations:

  • Single-particle interpretation breaks down at high energies ($E > 2mc^2$ allows pair creation)
  • Cannot describe particle creation/annihilation processes
  • Vacuum polarization and other QED effects require field theory

Resolution: Quantum Field Theory

Dirac field $\hat{\psi}(x)$ becomes operator creating/annihilating particles

$$\hat{\psi}(x) = \sum_s \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}}[b_s(\vec{p})u^s(\vec{p})e^{-ip \cdot x} + d_s^\dagger(\vec{p})v^s(\vec{p})e^{ip \cdot x}]$$

$b_s^\dagger, d_s^\dagger$ create particles and antiparticles

QED (Quantum Electrodynamics) combining Dirac and Maxwell fields:

  • Most precisely tested theory in physics ($g-2$ to 12 decimal places)
  • Template for Standard Model of particle physics
  • Foundation for all modern particle theory

Dirac's Triumph: The Dirac equation is one of the most beautiful achievements in theoretical physics. From the simple requirement of combining quantum mechanics with special relativity, it predicted spin-1/2, the correct magnetic moment, fine structure, and antimatter - all confirmed by experiment. It marked the transition from quantum mechanics to quantum field theory and remains the foundation for our understanding of fermions. As Dirac himself said: "A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data."