← Part IV/3D Harmonic Oscillator

6. 3D Harmonic Oscillator

Reading time: ~30 minutes | Pages: 8

Isotropic harmonic oscillator in three dimensions: important for nuclear and molecular physics.

The Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2r^2$$

Isotropic: same frequency in all directions

Cartesian Approach

Hamiltonian separates:

$$\hat{H} = \hat{H}_x + \hat{H}_y + \hat{H}_z$$

Energy eigenvalues:

$$E_{n_x,n_y,n_z} = \hbar\omega\left(n_x + n_y + n_z + \frac{3}{2}\right)$$

where $n_x, n_y, n_z = 0, 1, 2, \ldots$

Total Quantum Number

Define $N = n_x + n_y + n_z$:

$$E_N = \hbar\omega\left(N + \frac{3}{2}\right), \quad N = 0, 1, 2, \ldots$$

Degeneracy

Number of ways to write $N = n_x + n_y + n_z$:

$$g_N = \frac{(N+1)(N+2)}{2}$$

Examples:

  • $N=0$: $g_0 = 1$ (ground state)
  • $N=1$: $g_1 = 3$ (three states)
  • $N=2$: $g_2 = 6$

Spherical Approach

In spherical coordinates, wave functions factor:

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_\ell^m(\theta,\phi)$$

Radial equation:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[\frac{1}{2}m\omega^2r^2 + \frac{\hbar^2\ell(\ell+1)}{2mr^2}\right]u = Eu$$

Quantum Numbers in Spherical Form

Energy levels labeled by radial quantum number $n_r$:

$$E_{n_r,\ell} = \hbar\omega(2n_r + \ell + 3/2)$$

where $n_r = 0, 1, 2, \ldots$ and $\ell = 0, 1, 2, \ldots$

Relation: $N = 2n_r + \ell$

Selection Rules

For given $N$, allowed $\ell$ values have same parity:

  • Even $N$: $\ell = 0, 2, 4, \ldots$
  • Odd $N$: $\ell = 1, 3, 5, \ldots$

Ladder Operators

Can define six ladder operators (three pairs):

$$\hat{a}_{i\pm} = \frac{1}{\sqrt{2m\hbar\omega}}(m\omega\hat{x}_i \mp i\hat{p}_i), \quad i = x,y,z$$

Energy increases/decreases by $\hbar\omega$ with each operator

Ground State

$$\psi_0(\vec{r}) = \left(\frac{m\omega}{\pi\hbar}\right)^{3/4}e^{-m\omega r^2/(2\hbar)}$$

Spherically symmetric, non-degenerate

Applications

  • Nuclear physics: Shell model (nucleons in average potential)
  • Molecular physics: Vibrations near equilibrium
  • Quantum dots: Electrons confined in parabolic potential
  • Trapped ions: Paul and Penning traps