← Part IV/Central Potential

2. Central Potential

Reading time: ~35 minutes | Pages: 9

Potentials depending only on distance from origin: $V(\vec{r}) = V(r)$

Separation in Spherical Coordinates

For $V = V(r)$, assume:

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$$

Separates into radial and angular parts

Angular Equation

The angular part satisfies:

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\phi^2} = -\ell(\ell+1)Y$$

Solutions are spherical harmonics $Y_{\ell}^m(\theta,\phi)$

Radial Equation

The radial part satisfies:

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left[V(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}\right]R = ER$$

Centrifugal term acts like a repulsive potential

Effective Potential

$$V_{\text{eff}}(r) = V(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}$$

The second term is the centrifugal barrier:

  • Repulsive, goes as $1/r^2$
  • Larger for higher angular momentum
  • Prevents particle from reaching origin (except $\ell = 0$)

Reduced Radial Equation

Define $u(r) = rR(r)$:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + V_{\text{eff}}(r)u = Eu$$

This looks like 1D Schrödinger equation!

Boundary conditions:

  • $u(0) = 0$ (regularity at origin)
  • $u(\infty) \to 0$ (bound states)

Quantum Numbers

Complete set for central potential:

$$|n,\ell,m\rangle$$
  • $n$: Principal quantum number (energy)
  • $\ell$: Orbital angular momentum quantum number, $0 \leq \ell < n$
  • $m$: Magnetic quantum number, $-\ell \leq m \leq \ell$

Behavior at Origin

For small $r$, the centrifugal term dominates:

$$R(r) \sim r^\ell \quad \text{as } r \to 0$$

Implications:

  • $\ell = 0$ (s-wave): finite at origin
  • $\ell > 0$: vanishes at origin
  • Higher $\ell$ means less penetration to small $r$

Asymptotic Behavior

Bound states ($E < 0$):

$$R(r) \sim e^{-\kappa r} \quad \text{as } r \to \infty$$

where $\kappa = \sqrt{-2mE}/\hbar$

Scattering states ($E > 0$):

$$R(r) \sim \sin(kr + \delta_\ell) \quad \text{as } r \to \infty$$

where $\delta_\ell$ is the phase shift

Conservation of Angular Momentum

For central potentials, $[\hat{H}, \hat{\vec{L}}] = 0$

  • Angular momentum is conserved
  • Energy eigenstates are also angular momentum eigenstates
  • $\ell$ and $m$ are good quantum numbers
  • Motion in fixed plane (classical analog)