← Part IV/3D Schrödinger Equation

1. 3D Schrödinger Equation

Reading time: ~25 minutes | Pages: 7

Extending quantum mechanics to three spatial dimensions.

Time-Independent Schrödinger Equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = E\psi(\vec{r})$$

where the Laplacian is $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

Cartesian Coordinates

In Cartesian coordinates ($x, y, z$):

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) + V(x,y,z)\psi = E\psi$$

Spherical Coordinates

For spherically symmetric problems, use $(r, \theta, \phi)$:

$$\nabla^2 = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}$$

Coordinate transformations:

$$x = r\sin\theta\cos\phi, \quad y = r\sin\theta\sin\phi, \quad z = r\cos\theta$$

Separation of Variables

For potentials with separable symmetry, try:

$$\psi(x,y,z) = X(x)Y(y)Z(z)$$

This works when:

$$V(x,y,z) = V_x(x) + V_y(y) + V_z(z)$$

Total energy: $E = E_x + E_y + E_z$

3D Infinite Box

Particle confined to $0 \leq x,y,z \leq L$:

$$\psi_{n_x,n_y,n_z}(x,y,z) = \left(\frac{2}{L}\right)^{3/2}\sin\left(\frac{n_x\pi x}{L}\right)\sin\left(\frac{n_y\pi y}{L}\right)\sin\left(\frac{n_z\pi z}{L}\right)$$

Energy levels:

$$E_{n_x,n_y,n_z} = \frac{\hbar^2\pi^2}{2mL^2}(n_x^2 + n_y^2 + n_z^2)$$

Degeneracy: Different $(n_x, n_y, n_z)$ can give same energy

Momentum Operators

$$\hat{\vec{p}} = -i\hbar\nabla = -i\hbar\left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)$$

Commutation relations:

$$[\hat{x}_i, \hat{p}_j] = i\hbar\delta_{ij}$$

Free Particle in 3D

Plane wave solution:

$$\psi_{\vec{k}}(\vec{r}) = Ae^{i\vec{k}\cdot\vec{r}}$$

Energy-momentum relation:

$$E = \frac{\hbar^2k^2}{2m} = \frac{p^2}{2m}$$

where $\vec{p} = \hbar\vec{k}$

Probability Current Density

$$\vec{j}(\vec{r},t) = \frac{\hbar}{2mi}\left(\psi^*\nabla\psi - \psi\nabla\psi^*\right) = \frac{1}{m}\text{Re}(\psi^*\hat{\vec{p}}\psi)$$

Continuity equation:

$$\frac{\partial\rho}{\partial t} + \nabla\cdot\vec{j} = 0$$