← Part VII/Multi-Electron Atoms

4. Multi-Electron Atoms

Reading time: ~40 minutes | Pages: 10

Complex interactions between electrons shape atomic structure and chemistry.

The Many-Body Hamiltonian

For $Z$ electrons in nuclear potential:

$$\hat{H} = \sum_{i=1}^Z\left[-\frac{\hbar^2}{2m}\nabla_i^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i}\right] + \sum_{i<j}\frac{e^2}{4\pi\epsilon_0 r_{ij}}$$

Kinetic + nucleus-electron attraction + electron-electron repulsion

Problem: No exact solution for $Z \geq 2$

Central Field Approximation

Approximate each electron in spherically symmetric potential:

$$\hat{H} \approx \sum_{i=1}^Z\left[-\frac{\hbar^2}{2m}\nabla_i^2 + V(r_i)\right]$$

Effective potential includes:

  • Nuclear attraction: $-Ze^2/(4\pi\epsilon_0 r)$
  • Average repulsion from other electrons (screening)

Separable → product of single-electron wave functions

Screening and Effective Charge

Inner electrons screen nuclear charge:

$$Z_{eff} = Z - \sigma$$

where $\sigma$ is screening constant

Slater's rules: Empirical estimates of $\sigma$

  • Electrons in same shell: $\sigma = 0.35$ each
  • Electrons in $n-1$ shell: $\sigma = 0.85$ each
  • Electrons in $n-2$ or lower: $\sigma = 1.00$ each

Orbital Energies

Approximate energy for orbital $(n,\ell)$:

$$E_{n\ell} \approx -\frac{Z_{eff}^2 \times 13.6\text{ eV}}{n^2}$$

Key point: Energy depends on both $n$ and $\ell$

  • Higher $\ell$ → less penetration → more screening → higher energy
  • Ordering: $E_{ns} < E_{np} < E_{nd} < E_{nf}$ for same $n$

Electron Configuration Notation

Format: $n\ell^x$ where $x$ is number of electrons

Examples:

  • Hydrogen (Z=1): 1s¹
  • Helium (Z=2): 1s²
  • Carbon (Z=6): 1s² 2s² 2p²
  • Neon (Z=10): 1s² 2s² 2p⁶
  • Iron (Z=26): [Ar] 3d⁶ 4s²

[Ar] denotes filled argon core: 1s² 2s² 2p⁶ 3s² 3p⁶

Term Symbols

Spectroscopic notation: $^{2S+1}L_J$

  • $S$: Total spin angular momentum
  • $L$: Total orbital angular momentum (S, P, D, F, ...)
  • $J$: Total angular momentum $J = L + S$
  • $2S+1$: Multiplicity (singlet, doublet, triplet, ...)

Example: Carbon ground state $^3P_0$

  • $S = 1$ (two unpaired electrons, parallel spins)
  • $L = 1$ (P state)
  • $J = 0$
  • Triplet (three spin states)

LS Coupling (Russell-Saunders)

For light atoms, orbital and spin momenta couple separately:

$$\vec{L} = \sum_i\vec{\ell}_i, \quad \vec{S} = \sum_i\vec{s}_i, \quad \vec{J} = \vec{L} + \vec{S}$$

Energy levels split by:

  • Electrostatic repulsion (depends on $L, S$)
  • Spin-orbit coupling (depends on $J$)

jj Coupling

For heavy atoms, spin-orbit coupling dominates:

$$\vec{j}_i = \vec{\ell}_i + \vec{s}_i, \quad \vec{J} = \sum_i\vec{j}_i$$

Individual electron $j$ values couple to total $J$

Hartree-Fock Method

Self-consistent field approach:

  1. Guess initial wave functions $\psi_i^{(0)}$
  2. Calculate effective potential from all other electrons
  3. Solve Schrödinger equation for each electron
  4. Update wave functions $\psi_i^{(1)}$
  5. Iterate until self-consistent (convergence)

Includes exchange effects automatically through antisymmetrization

Configuration Interaction

Beyond Hartree-Fock: Mix multiple configurations

$$|\Psi\rangle = c_0|\Psi_0\rangle + \sum_i c_i|\Psi_i\rangle$$

where $|\Psi_0\rangle$ is ground configuration, $|\Psi_i\rangle$ are excited configurations

Captures electron correlation effects

Example: Carbon (Z=6)

Configuration: 1s² 2s² 2p²

Ground state: Two 2p electrons

  • Hund's rule: parallel spins in different orbitals
  • $m_\ell = 1, 0$ (or any two different)
  • $m_s = +1/2, +1/2$ (parallel)

Quantum numbers:

  • $L = 1$ (P state)
  • $S = 1$ (triplet)
  • $J = 0, 1, 2$ → Ground state $J = 0$ (Hund's third rule)

Term symbol: $^3P_0$

Example: Oxygen (Z=8)

Configuration: 1s² 2s² 2p⁴

Ground state: Four 2p electrons

  • Fill three orbitals with parallel spins: ↑ ↑ ↑
  • Fourth electron pairs with one: ↑↓ ↑ ↑
  • $S = 1$, $L = 1$

Term symbol: $^3P_2$

Anomalous Configurations

Some atoms violate aufbau principle for stability:

  • Chromium (Z=24): [Ar] 3d⁵ 4s¹ (not 3d⁴ 4s²)
  • Copper (Z=29): [Ar] 3d¹⁰ 4s¹ (not 3d⁹ 4s²)

Reason: Half-filled and fully-filled subshells are extra stable

Exchange energy favors maximum number of parallel spins