← Part VII/Fermions & Bosons

2. Fermions & Bosons

Reading time: ~28 minutes | Pages: 7

Two fundamental classes of particles with profoundly different behaviors.

Classification by Spin

Fermions (half-integer spin):

  • Spin $s = 1/2, 3/2, 5/2, \ldots$
  • Obey Fermi-Dirac statistics
  • Antisymmetric wave functions
  • Examples: electrons, protons, neutrons, quarks, neutrinos

Bosons (integer spin):

  • Spin $s = 0, 1, 2, \ldots$
  • Obey Bose-Einstein statistics
  • Symmetric wave functions
  • Examples: photons, gluons, W/Z bosons, Higgs boson, $^4$He atoms

Occupation Numbers

Fermions:

$$n_i = 0 \text{ or } 1$$

Each quantum state can contain at most one fermion

Bosons:

$$n_i = 0, 1, 2, 3, \ldots, \infty$$

Unlimited number of bosons can occupy same state

Distribution Functions

Fermi-Dirac distribution:

$$f_{FD}(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1}$$

Average occupation number at energy $E$, chemical potential $\mu$

Bose-Einstein distribution:

$$f_{BE}(E) = \frac{1}{e^{(E-\mu)/k_BT} - 1}$$

Classical limit ($T \to \infty$): Both approach Maxwell-Boltzmann

$$f_{MB}(E) \approx e^{-(E-\mu)/k_BT}$$

Fermi Energy and Fermi Surface

At $T = 0$, fermions fill states up to Fermi energy:

$$E_F = \mu(T=0)$$

For free electron gas in 3D:

$$E_F = \frac{\hbar^2}{2m}(3\pi^2 n)^{2/3}$$

where $n$ is number density

Fermi surface: Boundary in momentum space between occupied and unoccupied states

Degeneracy Pressure

Fermions resist compression due to Pauli exclusion:

$$P_{deg} = \frac{2}{5}nE_F$$

Applications:

  • White dwarfs: Electron degeneracy pressure supports star against gravity
  • Neutron stars: Neutron degeneracy pressure (even stronger)
  • Metals: Electrons near Fermi surface determine properties

Bose-Einstein Condensation

Below critical temperature, macroscopic occupation of ground state:

$$T_c = \frac{2\pi\hbar^2}{mk_B}\left(\frac{n}{\zeta(3/2)}\right)^{2/3}$$

Fraction in ground state:

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$

Observed in:

  • Liquid $^4$He (superfluid)
  • Ultracold atomic gases (87Rb, 23Na, etc.)
  • Exciton-polaritons in semiconductors

Photons and Blackbody Radiation

Photons are bosons with $\mu = 0$ (not conserved):

$$f(\omega) = \frac{1}{e^{\hbar\omega/k_BT} - 1}$$

Planck's blackbody spectrum:

$$u(\omega, T) = \frac{\hbar\omega^3}{\pi^2c^3}\frac{1}{e^{\hbar\omega/k_BT} - 1}$$

Energy density per unit frequency

Composite Particles

Statistics determined by total spin:

  • $^4$He atom: 2 protons + 2 neutrons + 2 electrons = 6 fermions → integer spin → boson
  • $^3$He atom: 2 protons + 1 neutron + 2 electrons = 5 fermions → half-integer spin → fermion
  • Cooper pairs: Two electrons (fermions) pair → spin-0 → boson (superconductivity)
  • Hydrogen molecule H₂: Even number of fermions → boson

Matter Structure

Fermions build structure:

  • Pauli exclusion → electrons in shells → atoms
  • No two electrons in same state → periodic table
  • Degeneracy pressure → stability of matter

Bosons mediate forces:

  • Photons → electromagnetic force
  • Gluons → strong force
  • W/Z bosons → weak force
  • Gravitons (hypothetical) → gravity

Key Differences Summary

PropertyFermionsBosons
SpinHalf-integerInteger
Wave functionAntisymmetricSymmetric
Pauli exclusionYesNo
Max per state1Unlimited
BehaviorSpread outBunch together
CollectiveFermi gasBEC, lasers