← Part VII/Periodic Table

5. The Periodic Table

Reading time: ~32 minutes | Pages: 8

Quantum mechanics reveals the deep structure underlying chemistry's organization.

Quantum Basis of Periodicity

Periodic properties arise from electron shell structure:

  • Pauli exclusion: Limits electrons per orbital
  • Shell filling: Electrons occupy lowest available energy states
  • Valence electrons: Outermost electrons determine chemistry
  • Screening: Inner electrons shield outer electrons from nucleus

Shell Structure

Shell (n)SubshellsMax ElectronsPeriod
K (n=1)1s21
L (n=2)2s, 2p82
M (n=3)3s, 3p, 3d183, 4
N (n=4)4s, 4p, 4d, 4f324, 5, 6

Maximum electrons per shell: $2n^2$

Groups and Families

Group 1 (Alkali metals): ns¹

  • Li, Na, K, Rb, Cs, Fr
  • One valence electron → highly reactive
  • Easily lose electron to form +1 ions

Group 2 (Alkaline earth): ns²

  • Be, Mg, Ca, Sr, Ba, Ra
  • Two valence electrons → reactive
  • Form +2 ions

Groups 3-12 (Transition metals): (n-1)d¹⁻¹⁰ ns¹⁻²

  • Filling d orbitals
  • Variable oxidation states
  • Colored compounds, catalytic activity

Group 17 (Halogens): ns² np⁵

  • F, Cl, Br, I, At
  • One electron short of filled shell → very reactive
  • Form -1 ions

Group 18 (Noble gases): ns² np⁶

  • He, Ne, Ar, Kr, Xe, Rn
  • Filled outer shell → chemically inert

Ionization Energy

Energy required to remove electron:

$$IE = E(\text{ion}) - E(\text{atom})$$

Trends:

  • Across period (left to right): Increases (stronger nuclear attraction, less screening)
  • Down group: Decreases (larger atoms, more screening)
  • Peaks: Noble gases (filled shells)
  • Valleys: Alkali metals (single valence electron)

Electron Affinity

Energy released when adding electron:

$$EA = E(\text{atom}) - E(\text{ion}^-)$$

Trends:

  • Halogens: Highest EA (one electron from filled shell)
  • Noble gases: Negative EA (don't want extra electron)
  • Generally increases: Left to right across period

Atomic Radius

Trends:

  • Down group: Increases (more shells)
  • Across period: Decreases (stronger nuclear pull with same shells)

Effective size estimate:

$$r \sim \frac{n^2 a_0}{Z_{eff}}$$

Electronegativity

Tendency to attract electrons in bond (Pauling scale):

  • Fluorine: 4.0 (most electronegative)
  • Cesium/Francium: ~0.7 (least electronegative)
  • Trend: Increases diagonally toward top-right

Determines bond type:

  • $\Delta EN > 1.7$: Ionic
  • $0.4 < \Delta EN < 1.7$: Polar covalent
  • $\Delta EN < 0.4$: Nonpolar covalent

Lanthanides and Actinides

Lanthanides (elements 57-71):

  • Filling 4f orbitals
  • Configuration: [Xe] 4f¹⁻¹⁴ 5d⁰⁻¹ 6s²
  • Similar chemistry (hard to separate)
  • Lanthanide contraction: radius decreases across series

Actinides (elements 89-103):

  • Filling 5f orbitals
  • Configuration: [Rn] 5f¹⁻¹⁴ 6d⁰⁻¹ 7s²
  • Many are radioactive
  • More variable oxidation states than lanthanides

Chemical Bonding Preview

Ionic bonding:

  • Electron transfer: metal + nonmetal
  • Example: Na⁺Cl⁻
  • Driven by: Low IE (metal) + high EA (nonmetal)

Covalent bonding:

  • Electron sharing: nonmetal + nonmetal
  • Example: H₂, O₂, CH₄
  • Quantum: Overlapping orbitals, bonding/antibonding states

Metallic bonding:

  • Delocalized electrons (electron sea)
  • Metal + metal
  • Conductivity, malleability

Exceptions to Simple Patterns

  • Chromium: [Ar] 3d⁵ 4s¹ (not 3d⁴ 4s²) - half-filled d stability
  • Copper: [Ar] 3d¹⁰ 4s¹ (not 3d⁹ 4s²) - filled d stability
  • Palladium: [Kr] 4d¹⁰ (no 5s electrons!)
  • Helium: Group 18 but 1s² (not p⁶)
  • Hydrogen: Unique - can be +1, -1, or share

Modern Periodic Law

Properties of elements are periodic functions of their atomic number (not atomic mass).

Quantum explanation:

  • Atomic number = number of protons = number of electrons
  • Electron configuration determines chemistry
  • Pauli exclusion → shell structure → periodicity

Mendeleev (1869) organized by mass; Moseley (1913) proved atomic number is fundamental